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Abstract
The merging process of two amphiphilic cylindrical micelles has been simulated
using a coarse grained model in which amphiphiles are represented as chains
of one head particle and four tail particles. In our set-up with twisted boundary
conditions, a ring-shaped worm is effectively entangled with itself. Upon
stretching the box, putting the worms under tension, a fusion into an H-like
structure is observed, which eventually transforms into an almost tensionless
structure with two freely gliding Y-junctions. The tensions on the worms never
reach the point where scission becomes an alternative to fusion. We end with
a short discussion of the possible implications of these observations.

1. Introduction

Depending on molecular structure and prevailing thermodynamic conditions, amphiphilic
molecules self-assemble in a great variety of morphological structures. A convenient parameter
to quantify the importance of the molecular structure is the packing parameter p = v/(al),
where v is the volume of the hydrophobic tail of the amphiphile, a is the area occupied by
its hydrophilic head group and l the length of its tail. Often a crude understanding of the
influence of thermodynamic parameters, such as salt concentration and temperature, on the
morphology can be obtained by considering their influence on the packing parameter. In dilute
solutions micellar structures tend to be spherical for values of the packing parameter around 1/3
and rodlike when p is close to 1/2 [1]. With increasing surfactant concentration, cD, rodlike
amphiphiles grow into long cylindrical structures or worms,whose lengths finally by far exceed
their persistence lengths. The persistence length lp is the length over which the worm may be
considered to be a stiff rod. It is related to the bending rigidity coefficient κ by lp = κ/(kBT ),
with kB Boltzmann’s constant and T the temperature. Above some overlap concentration c∗

D
wormlike micellar solutions enter the semi-dilute regime, where the worms get entangled and
consequently their viscosities increase dramatically. In many respects wormlike micelles may
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be thought of as giant polymers or polyelectrolytes. An important difference, however, is their
ability to reversibly break and recombine on experimental timescales. As a result, wormlike
micelles have a rich rheology, rendering them perfect functional fluids in many industrial
applications [2]. Several review papers have been published describing their rheological and
structural properties [3–5], and a theoretical explanation thereof [6] which is believed to be
applicable at least in the case of specific model systems. In this introduction we will restrict
ourselves to mentioning a few of the basic assumptions and results relating to the possible
occurrence of entanglements and Y-junctions.

Since scission energies Esc, i.e. the energies to create two new end points, are typically
in the order of 25kBT and the corresponding activation barriers are not insurmountably large,
wormlike micelles are subject to many scissions and re-combinations on the characteristic
timescales of most rheological experiments. As a consequence, their length distribution may
be assumed to be the thermodynamic equilibrium distribution [1, 3, 6]:

c(L) ∼ exp(L/〈L〉)
〈L〉 = 2lpϕ

α exp(Esc/2kBT ).

Here c(L) is the number concentration of chains of length L, 〈L〉 is the average length, ϕ is the
surfactant volume fraction, and α is an exponent which in the mean field approximation is equal
to 0.5. Average lengths typically range from hundreds of nanometres to several micrometres;
for comparison, diameters are typically a few nanometres and persistence lengths are in the
order of 10–30 nm [4]. The above length distribution assumes that only linear worms occur,
which can break and can recombine when two endpoints meet. On the basis of a variety
of rheological experiments, several authors [7–9] have suggested that branching of worms
and the formation of saturated networks may occur, which now seems to be well established
by cryogenic transmission electron microscopy experiments [10]. Theoretical investigations
of the thermodynamics of branched worms have revealed the possibility of coexistence of
dilute and dense phases at very low volume fractions. While the earlier theory of Drye and
Cates [11] predicts the gas–liquid phase equilibrium only when the strands between branch
points consist of very flexible chains, the more recent theory of Kindt [12], substantiated by
molecular dynamics simulations, needs rigid chains.

The rheological properties of entangled wormlike micelles may be described by combining
reptation theory [13] with a suitable kinetic model describing the scission and recombination
of the living polymers. To this end the following processes have been considered [3, 6].

(i) Reversible scission, in which chains break randomly and recombine by end to end fusion.
(ii) End interchange, in which one chain breaks and one of the two products re-combines with

a nearby end of a third chain.
(iii) Bond interchange, in which two chains swap a central bond.

The latter two of these lead to a different relaxation of the length distribution after a sudden
change in temperature compared to the first one [3, 6], essentially because they preserve
the total number of chains. Experiments are weakly in favour of the first mechanism [3].
Assuming this mechanism to be dominant, Cates [14] has investigated its influence on the
disentangling of a worm out of its tube, which would have taken a time τrep had the worm
not been capable of reversibly breaking. In cases when the break-up time τb = 1/(k1〈L〉),
with k1 the scission rate per unit of length, is much smaller than τrep but large enough to
justify the mean field approximation, which assumes that the chain ends have time enough to
explore their local environment [15], his theory predicts a mono-exponentialdecay of the shear
relaxation modulus with relaxation time τR = (τbτrep)

1/2. An extension of the theory [16] to
the case of weakly branched systems retains this mono-exponential decay, but attributes to
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it a somewhat smaller decay time τR , due to an enhanced curvilinear diffusion of the chains
along their tubes. The mono-exponential decay of the shear relaxation modulus has been
amply confirmed by experiments [3, 4, 17]. The scaling of rheological properties with volume
fraction of surfactant and salt concentration is much more problematic, however [4]. As to salt
concentration, there seems to be some consensus that increasing salt concentrations enlarge
scission energies, thereby enlarging the viscosity, but finally allowing for branching, thereby
lowering the viscosity again.

A few results from nonlinear rheology are relevant for our discussion. With increasing
shear rates, dilute aqueous solutions of cetyltrimethyammonium tosylate (CTAT) below ϕ∗

D
finally approach a critical shear rate above which the viscosity quickly rises to a maximum,
which is about ten times as large as the initial viscosity, and then gradually decays again to quite
low values [18–20]. Concomitant neutron scattering experiments reveal that above the critical
shear rate the micellar rods start to grow with increasing shear rate and finally strongly align
with the flow field. Analysis of the position of the first peak of the scattered intensity along
the vorticity direction suggests that the shear thickening is due to a shear induced rod–worm
transition.

When sheared hard enough, all entangled wormlike micelles finally shear thin by several
orders of magnitude. Often the decrease in apparent viscosity occurs over such a small range
of stress values that the stress effectively reaches a plateau. Local scattering experiments have
revealed [21] the existence of bands of different microstructures in such cases. Recently [22]
the velocity profile of a shear banded wormlike micelle in a Couette gap has been measured
using heterodyne light scattering. The measurements indicate explicitly the presence of two
different bands, a weakly sheared band and one that flows with a high shear rate. On increasing
the overall shear rate, the highly sheared band grows progressively at the expense of the low
shear band, in agreement with earlier theoretical predictions [23, 24]. The high shear rate band
is very fluid and consists of strongly aligned worms.

Only a few particle-based simulations of living polymers have been performed. All of
them are based on the so-called FENE-C model [25], which is basically a pearl-necklace chain
allowing for the breaking of bonds if their potential energy surpasses a value Esc, and for the
recombination of two chains when their ends meet. The solvent consists of single beads of the
same size as a monomer. The model is essentially the same as the one used by Cates [14]. It
is therefore perfectly suited to investigate the assumptions implicit in Cates’s theory, such as
the mean field approximation and the assumption that the length distribution is insensitive to
the applied shear. In gross terms, the simulations justify these assumptions and confirm the
predicted exponential length distribution. It therefore seems appropriate now to set the theory
to a more severe test, by simulating a model which allows for as many relaxation mechanisms
as are conceivable. In particular, the role of branching in strongly sheared systems should be
investigated. In order not to be misled by our limited imagination,we have set ourselves the task
of investigating possible ‘elementary processes’ occurring at points where worms entangle, by
performing particle-based simulations appropriate for this particular level of description. In
the next section we will describe our model and simulation methods. In section 3 we present
our results and discuss their relevance to the rheology of wormlike micelles.

2. Model and simulation methods

Since atomistic simulations of wormlike micelles long enough to sample all modes reasonably
well, including the slowest ones, are still out of reach with present day computer power, we
have chosen to model the worms at their smallest scale by means of a slightly coarse grained
model [26]. The building blocks of this model are still small compared to the typical diameter
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of a worm. Each amphiphile consists of one hydrophilic head particle of diameter (4)1/3σ

and four hydrophobic tail particles of diameter σ [27], bound together by a harmonic potential
�bnd(ri j) = 5000εσ−2(ri j −σi j)

2, where σi j is calculated by the usual combination rules. Each
tail particle represents about three CH2 groups. Solvent is simulated by means of spherical
particles of diameter σ , each representing about two water molecules. Interactions between like
particles, as well as the hydrophilic head–water interactions, are modelled by a Lennard-Jones
potential �LJ(ri j) = 4ε[(σi j/ri j)

12 − (σi j/ri j)
6]; the hydrophobic tail–water and tail–head

interactions are modelled by a purely repulsive potential �rep(ri j) = ε(1.05σi j/ri j)
9. These

non-bonded forces are implemented in the shifted-force fashion, to smooth the potential near
the cut-off radius of 2.5σi j . All particles have the same mass m. A Nose–Hoover thermostat
was used to keep the temperature constant at a value T = 1.35ε/kB and the density was set
to two particles per 3σ 3. The time step was equal to τ/500 with τ = (mσ 2/ε)1/2. A link to
experimental values is achieved by σ = 1/3 nm, ε = 2 kJ mol−1 and m = 36 g mol−1, in
which case T = 325 K and τ = 1.4 ps. In a previous simulation [27] we found that the model
yields a persistence length of 38σ or 13 nm, which is at the lower side of the experimental
range of persistence lengths for wormlike micelles.

The above model is a slight modification of an earlier model [26], in which all particles
have the same diameter of 1σ , and which yields stable bi-layers with an area per head group of
23.5 Å2 and an elasticity coefficient equal to 250 mJ m−2 [26, 28, 29]. In a recent study [29]
we found that this model gives rise to an edge free energy of 3.9 × 10−11 J m−1, in good
agreement with experiments [30]. This model does not produce stable worms, however,
because its packing parameter is too high, hence the fourfold increase of the volume of the
head group used here [27]. Given the above findings, we are confident that the model faithfully
represents a generic amphiphile with enough detail to be used in a ‘microscopic’ simulation.

To simulate the interactions between two closely entangled worms, the two worms should
somehow be forced towards one another. We have chosen here to make a chain of interlocking
ring-shaped wormlike micelles, with the chain directed along the z-axis and the rings alternating
parallel to the xz and the yz plane. An entanglement arises when the chain is stretched along
its axis, i.e. by increasing the length of the periodic simulation box. With regular periodic
boundary conditions this requires a box containing one full ring and two half rings. This
makes for a rather voluminous simulation box, containing a large number of solvent particles,
especially when one realises that the flat shape of the rings cannot be exploited because of
the perpendicular orientation of successive rings. Fortunately, a box of half this size suffices
when twisted boundary conditions are used, as introduced by Allen and Masters [31] in their
simulation of a nematic liquid crystal with a twisting director. The central idea is to connect the
face of the simulation box at −Lz/2 with the face at Lz/2 after a 90◦ clockwise rotation around
the z-axis, while the two remaining pairs of opposite faces are still coupled by regular periodic
boundary conditions. The box now contains only two hemicycles, see figure 1, with the ends
pairwise connected by the twisted boundary conditions to form one continuous ring. Although
these boundary conditions are fairly simple, their actual implementation in DL POLY2.0 [32]
required numerous changes in various subroutines. One of its consequences is that the x- and
y-directions are no longer uniquely defined, hence in the following we will regularly use the
terms parallel (to the z-axis) and perpendicular.

For the initial box, the two halves of the worm were created by making two semi-circles,
with a radius of 18σ , from 70 slabs of six amphiphiles each. The halves were oriented parallel to
the diagonals of the square ground plane of the box,with their centres displaced along the z-axis
to form an interlocked configuration. The resulting ring of 840 amphiphiles has an equilibrium
length, including thermal undulations, of nearly 130σ [27]. Solvent was added by randomly
placing 45 800 particles in the box, rejecting all positions with a large overlap with previously
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Figure 1. A snapshot of the simulation box containing one self-entangled wormlike micelle.
Because of the twisted periodic boundary conditions along the z-axis, the ends marked ‘A’ are
mutually connected, as are the ends marked ‘B’. The head and tail particles are two different
shades of grey, and are not displayed to size. The solvent has been omitted for clarity. The solid
curves serve as a guide to the eye.
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Figure 2. Lateral tension on the box as a function of the length of the simulation box. The lines
serve to collect the data points into groups; the arrows indicate some of the observed pressure drops
(the average tensions during the transitional runs are not shown). The tension unit εσ−1 along the
vertical axis corresponds to 10 pN.

accepted particles. The box was thoroughly equilibrated before the actual production runs
started. The simulations showed that this ring, as well as a ring of 450 amphiphiles run with
regular boundary conditions, is stable.

3. Results and discussion

Starting with the above described configuration, we stepwise stretched the box along the
parallel direction, thereby pulling the worms tightly together, while keeping the total volume
of the box constant. In figure 2 we display the lateral tension, i.e. the perpendicular area of the
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Figure 3. Tension versus time for the transitions at Lz = 70σ (top) and 75σ (bottom). The grey
line shows a running average over 1000 data points stored at intervals of 0.02τ ; the black line is a
smooth fit. A period of 1000τ corresponds to 1.4 ns.

box times the difference between the pressures parallel and perpendicular to the z-axis [27],
as a function of the strain. The markers represent runs of 1000τ or 1.4 ns (about one week of
CPU time) with a fixed box length. After every increment of Lz the box was equilibrated for
a similar period, followed by one or more production runs. Several independent boxes with
identical Lz were used in the interesting regions of the plot, to verify the reproducibility of the
results. After a noisy low tension region, in which the worms occasionally collide because of
their Brownian motion, the tension eventually grows linearly with strain as a result of stretching
and reduced thermal undulations. Below a box length of 60σ nothing happened to the worms
during the sequels of several nanoseconds, and the plot is reversible. But beyond 60σ , for
tensions exceeding roughly 11εσ−1 or 110 pN, the boxes become unstable and pass through a
sharp drop of their tension to a value of about 2 to 3εσ−1 or 30 pN. The survival times at these
high tension states vary from a fraction of a nanosecond to several nanoseconds, and decrease
with increasing tension, indicative of an activated process. On further stretching the relaxed
boxes, their tensions again grow linearly up to about 8εσ−1 or 80 pN, at which point there is a
second drop of the tension, somewhat less abrupt than the first one, to a value of about 1εσ−1

or 10 pN. The time evolution of the tension in two typical boxes undergoing these processes
is shown in figure 3. Whereas the first process takes place within about 0.2 ns, the second one
needs nearly 2 ns to have the tension relaxed to its final value.

In order to better understand what exactly is happening during these two processes, we
show in figures 4 and 5 several snapshots of two boxes undergoing these processes. From these
figures it is clear that the first tension drop is associated with the merging of the two worms
to form an ‘H-structure’. It is interesting to note that this step can proceed along two distinct
routes. At the highest elongations the worms merge at the back of their respective apices, as
one would have expected, but at lower elongations the apex of one worm merges with a point
at about the same height on the second worm, as illustrated in figures 4 and 6, presumably
after a thermal fluctuation brings the two worms into contact. Although such grazing contacts
also happen at lower tensions, we did not observe a single fusion process in the several dozen
nanoseconds of simulations run at strains less than Lz = 60σ , suggesting that the stress on the
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Figure 4. Two ‘disconnected’ worms
merging into an ‘H-structure’ at Lz =
66σ , following the second pathway in
figure 6.

worm plays an important role in making the worm more receptive to fusion. After merging,
stress relaxation and the concomitant splitting of the ‘X-junction’ into two ‘Y-junctions’ yields
the final stable H-structure. The second tension drop results from the diminishing length of the
cross of the H-structure, causing the two Y-junctions to form one X-junction, which then splits
under the pressure into the final ‘2Y-structure’. By gradually shifting the two Y-junctions apart,
the system further relaxes its tension, explaining the slow decay in figure 3. This relaxation
stops when an equilibrium is reached between the elongational stress on the worm connecting
the two Y-junctions and the bending stress on the ring flanked by these two junctions.

Several remarks can be made about these findings. First, we should not give absolute
meaning to the size of the first tension drop in figure 3. This merely indicates how much this
particular finite system relaxes when it undergoes the corresponding process. Had the box been
twice as large as the present one, then the merging would still have occurred at a tension of
about 110 pN, but the corresponding tension drop would have been much less than the 80 pN
found in the present box. By merging, the worm effectively diminishes its length, thereby
relaxing its tension. In a larger box, the loss of length on merging is the same as with the
smaller one, but the corresponding tension drop is smaller since it is determined by the relative
loss of length. The second process, however, essentially allows the worm to relax its tension
to zero. Only when the box is stretched so much that the ring between the two Y-junctions
becomes strained will the tension grow again. It is reasonable to expect that finally the ring
will disappear and the tension will linearly grow again on stretching the box further. This latter
process can hardly be relevant in rheological experiments.
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Figure 5. An ‘H-structure’ breaking
up into a ‘2Y-structure’ at Lz = 75σ .
The final state consists of one worm
and one ring, with freely moving
junctions to minimize the tension.

1

2

Figure 6. A sketch of two entangled worms (solid curves) and the two
routes (arrows) taken during the merging process.

Second, should the worm in our simulations not break instead of merge? Obviously, on
using larger and larger boxes, i.e. scaling up the system, eventually the worm will break on
stretching. The break-up time for a worm of length L may be written as

τb(L) = α−1
0

L0

L
exp

(
Ea

0

kBT

)
,

where Ea
0 is the activation energy for breaking per bond length L0 in the tensionless state, and

α−1
0 is a time constant. Since in our simulations the boxes are stretched, the activation energy
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must be diminished by W0, the work done on the box in order to stretch it, divided by the
number of bonds. The break-up time τb(Lsim) of the worm in our simulation then reads

τb(Lsim) = 〈L〉
Lsim

τb(〈L〉) exp

(
− W0

kBT

)
.

The work done on the box in order to stretch it up to the point where merging occurs within
an accessible simulation time is about 240ε or 180kBT . Now we need a reasonable estimate
of the length of an ‘elementary’ bond. Basically there are three candidates, the diameter of a
head group, the diameter of the worm and the persistence length lp, i.e. 1σ , 7σ and 38σ [27].
Here we choose the diameter of the worm. The total equilibrium length of the material
in the box is 130σ , so W0 is equal to about 10kBT . Reasonable values for the remaining
quantities are 〈L〉 = 10−6 m and τb(〈L〉) = 10−1 s [3]. Putting everything together we find
τb(Lsim) = 1 × 10−4 s. We conclude that the break-up time, in the box with the highest
tension, is some four orders of magnitude longer than the longest run time, explaining why the
worms do not break during our simulations. Notice also that W0 is still much smaller than the
activation energy Ea

0.
Since stresses of 100 pN will not be uncommon in sheared systems, we expect that the

simulated process—merging of two entangled worms and subsequent splitting of the fourfold
junction into two Y-junctions—will be able to compete with simple breaking of the worms.
The mechanism provides a kinetic pathway to the formation of Y-junctions which is much
more effective than the attack of a central bond by an end. Moreover, because a relaxation
of the tension is easily achieved by adjusting the positions of the two Y-junctions or by the
exchange of amphiphiles between the three segments, it is unlikely for the connecting segment
to break. This makes the straightforward crossing of worms, process (iii) in the introduction,
an improbable event. Note that the observed merging process does not conserve the number
of chains, and therefore could agree with the temperature jump experiments.

In sheared systems, one branch of a Y-junction may slide along the other until the Y-
junction disappears and a single linear worm results whose length is the sum of the lengths of the
two original worms. This may explain the shear-induced growth of worms and corresponding
shear thickening found by Berret et al [18–20]. It may also explain the extreme lengths and
strong alignment of worms at even higher shear rates where shear thinning occurs.
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